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ABSTRACT 

A linearly ordered structure A4 = (M, <,-. .)  is called o-minimal if every 
definable subset of M is a finite union of points and intervals. Such an 
Ad is a CF structure if, roughly said, every definable family of curves 
is locally a one-parameter family. We prove that if .A4 is a CF structure 
which expands an (interval in an) ordered group, then it is elementary 
equivalent to a reduct of an (interval in an) ordered vector space. Along 
the way we prove several quantifier-elimination results for expansions and 
reducts of ordered vector spaces. 

1. Introduction 

General  o-minimal  theories were first studied by Pillay and Ste inhorn in [PS]. 

The  classical examples include the real field, the natura l  numbers  with the usual 

order,  and ordered vector spaces over the rationals,  reals, or any ordered division 

ring. It is examples of the lat ter  sort (and their reducts)  which concern us here. 

We remind the reader tha t  a first-order theory  T with distinguished total  order  < 

is o - m i n i m a l  if for any M ~ T, any definable subset of  M is a union of  finitely 

m a n y  points  and open intervals. We will always assume tha t  our  s t ructures  are 

densely ordered by <.  
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Although o-minimal theories cannot be stable, they are close relatives of those 

stable theories called s t rongly minimal  or those called weakly minimal. Our 

experience leads us to believe that they are closer to the latter. The models 

of such theories carry an exchange geometry naturally induced by the algebraic 

closure operation (on subsets); this is also the case for o-minimal theories. In re- 

cent stability theory, one of the crucial assumptions on the geometries so arising 

is that they are locally modular .  This condition is known to separate those 

that are geometrically complex from those that are relatively simple. For weakly 

minimal theories, the assumption that local modularity occurs locally (i.e., when 

one restricts the geometry to the set of realizations of some strong type) is equiv- 

alent to the notion of 1-basedness. A great deal is known about 1-based weakly 

minimal theories. If such theory T is nontrivial, it interprets an abelian group A, 

which can be described as a reduet of a weakly minimal module (see [HL]). Our 

results can be considered as an o-minimal version of these; we will not otherwise 

deal with them. 

We believe that the notion corresponding to 1-basedness in the o-minimal 

context is what we define below as the CF  proper ty .  Roughly, it says that if we 

have any uniformly definable family of partial functions, then these functions can 

be defined using a single parameter. Evidence for the naturality of this condition 

is in the results below, together with the following two results: 

THEOREM 1.1 ([P1]): Let .M = (M; < , . . . )  be an o-min/ma/structure with 

the CF property. Suppose that Jr4 has nontrivied geometry (equivaJently, .It4 is 

nondyad/c). Then there is an interval of M on which a structure of a group- 

interva/is A,q-detinable. 

This result is our starting point here. The notion of group-interval will be 

defined properly below; for the moment, think of a dosed and bounded interval 

in an ordered group with the group operation restricted to that interval. 

On the other side, there is: 

THEOREM 1.2 ([P2]): Let ./t4 = (M; < , . . . )  be a reduct of the reaJ Add which 

does not have the CF property. Then there is an interval of M on which a real 

dosed ~eld is ./td-definable. 

Our work will be the characterization of groups and goup-intervals satisfying 

the CF condition. Specifically, we will prove: 
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THEOREM 1.3: Let T be an o-minimal theory satisfying the CF property. 

1. I f  T is the theory of a group, then it is a reduct of 

Th( (V;+,<,d ,a :  d E D,a E Vo)), where ( V ; + , < , d :  d E D) is an or- 

dered vector space over the ordered division ring D, and V0 is a collection 

of algebraic points. 

2. I f  T is the theory of a goup-interval, then T is Th(.M), /'or some Ad as 

follows. Let 1~ be an ordered vector space, as in the last c/ause, / some 

interval in V and consider the structure induced by 1) on I. A4 is a reduct 

of this structure. 

There is actually more information contained below, including a quantifier 

elimination result for the reduets of ordered vector spaces. We also show that if 

T above is modular then we can omit the word 'reduet' in both statements. Note 

that this result, taken together with Theorem 1.1, gives complete information, 

at least locally, about nontrivial CF theories. 

2. Prel iminaries  

2.1 O-MINIMAL STRUCTURES. We first introduce some logical conventions: 

The symbol ~ will be reserved for structures, and M for the universe of .M. 

Unless otherwise stated, we take 'definable' to mean 'definable with parameters'. 

In some cases we wiU make precise the fact that we use parameters from A by 

saying 'A-definable'. For B _ M and a E M, we say that a is in the definable 

closure of  B, a E del(B), if there is a formula with parameters from B such 

that a is the unique element satisfying this formula. We say that a is in the 

algebraic closure of  B, or a E acl(B), if a is one of finitely many solutions 

to such a formula. We sometimes call a an  a lgebraic  po in t  if it is in ael(0). 

Notice that  in ordered structures the definable closure is the same as the alge- 

braic closure. We say that .Ad has t r iv ia l  g e o m e t r y  if for every A C M we have 

acl(A) = Ua~A acl((a}). 

The first order languages we consider will always assume to contain the binary 

relation <, interpreted in all structures as a dense linear ordering. Given .M, we 

always refer to the topology induced by < on the different M ~'s. A structure 

A4 is called o -min ima l  if every definable subset of M is a finite union of points 

from M and open intervals, all of whose endpoints lie in M U {+oo}. As was 

shown in [KPS], if .A~ is o-minimal and A/' = A4 then Af is also o-minimal. We 
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refer the reader to this last paper and to [PS] for the following basic results and 

definitions. 

The cell-decomposition theorem says that every A-definable set in an o-minimal 

structure is a finite union of A-definable cells (we omit here the definition of a 

cell). The following corollaries immediately follow: 

COROLLARY 2.1: Let U C_ M n be an A-definable open set and f an A-definable 

function from U into .M. Then U can be partitioned into finitely many A- 

definable sets, U I , . . . ,  Uk, such that f is continuous on each Ui. 

The following corollary can actually be strengthened to give quantifier elimi- 

nation down to the relation < and the 0-definable partial continuous functions. 

COROLLARY 2.2: Let 3,4 be o-minimal and {fi}ie1 the collection of all O- 

definable continuous (partial) functions from M n into M, for various n. Then 

every O-definable set is O-definable in the language containing < and the graphs 

of all the fi 's. 

One of the main tools in the proof of the cell-decomposition theorem is the 

fact that ,  in o-minimal structures, every definable unary function f is piecewise 

monotone. Namely, its domain can be partitioned into finitely many intervals and 

points such that on ea~ch interval f is either strictly monotone or constant. As a 

corollary, we have the exchange principle for the definable closure in o-minimal 

structures. 

We define two notions of dimension for an o-minimal structure A4. As we will 

point out below the two are related to one another. The algebraic dimension of 

a subset A _C M over another subset B C M is defined to be: 

d i m A / B  = min{[A'l : A' C_ A and for all a e A,a E dcl(A' U B)}. 

The topological dimension of a de f inab le  subset of M k is defined as follows: 

Since every cell C is definably homeomorphic to an open subset of some M n, 

for a unique n, we can define the dimension of C to be this n. If U C M k is a 

definable set then 

dim (U) = The largest n such that U contains a cell of dimension n. 

These notions have all the properties we expect them to have. Namely, 

dim(A/B)  is the same as the cardinality of any maximal independent (over B)  
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subset of A. If U = 6", O.-. O 6', is a union of cells then dim(U) = max{dim(6"i)}. 

Furthermore, as was pointed out in [Pi], if {Ua}a~M~ is an A-definable family 

of uniformly definable sets then, for every l E N, the set {~ : dim(Ua) = l} is 

A-definable. We also make use of the fact (see [vdD]) that for a definable set 

X _C M",  the boundary of X in M"  has dimension smaller than that  of X. 

The following dimension formula for tuples was established in [Pi]: If fi, ~ are 

tuples from M and A _C M, then 

dim(fi0/A) = dim(~/0A) + dim(~/A). 

The next definition brings together the two notions of dimensions. 

Deiqnition 2.3: Let M be an o-minimal structure, and assume that  U is an A- 

definable subset of M k for some k. We say that ~0 is gener ic  in U over  A if 

d im(• /A)  = dim(U). 

As was noted in [Pi], if M is an w-saturated structure, A C_ M is finite and U 

an A-definable set, then 

~0 is generic in U over A iff dim(fi0/A) = max{dim(~/A) : ~ E U}. 

For U a definable subset of M ~ and ~ E U, we say that V C_ U is a neigh-  

b o r h o o d  o f  fi if V contains an open set around fi in the relative topology of 

U. It is easily seen that if V c_ U is a neighborhood of a generic point in U, 

then dim(V) = dim(U). Now if a0 is generic in U over A and if V C_ U is an 

A-definable set containing u0, then the boundary of U\V has smaller dimension 

than that  of U and hence u0 is an interior point of V in U. It follows that when- 

ever u0 satisfies a first order property which can be stated using parameters from 

A then there is a neighborhood V _C U of u0 where this property holds. 

Some of the work in this paper will be done under the following assumptions: 

De//nition 2.4: (i) A structure A4 called m o d u l a r  if for every two subsets 

A, B _C M we have 

dim(A/0) + dim(B/0) = dim(dcl(A) fl dcl(B)/0) + dim(A O B/O). 

M is called locally m o d u l a r  if there is a tuple a from M such that (M,  a) is 

modular. 

(ii) A theory T is called m o d u l a r  ( locally m o d u l a r )  if there is a ]Tl+-saturated 

model A4 ~ T which is modular (locally modular). 
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2.2 ON DEFINABLE EQUIVALENCE RELATIONS. We first introduce some nota-  

t ion. Let U be a definable subset of M" .  For E a definable equivalence relation 

on U denote by [fi]E the E-equivalence class of fi in U. We define the dimension 

of the quotient v as follows: 

For k �9 {0 , . . . ,d im(U)},  we let U E = {fi �9 U :  dim([filE) = k}. Notice that 

U E is definable over the same parameters used to define U and E. We then 

define: 

dim ( E )  = max{dim(Uff) - k :  k �9 {0, . . .  ,dim(U)}}. 

In [P1] several basic results were proved for this notion, demonstrating why this 

definition is natural. We will use time and again the fact that the dimension is 

a definable notion, in the sense that if {Ua, Ea}aew is a definable family of sets 

equipped with a definable equivalence relation then for every I �9 l~I {a �9 W : 

dim (~-) = I} is a definable set. We also use the fact that dim(U/E)  _> 1 iffthere 

are infinitely many E-classes in U. For U and E as above, if V _C U is a definable 

set we will use E to denote also the restriction of the equivalence relation to V. 

Hence ~ is just  {[~]g (3 V : fi �9 V}. The facts below are easily deduced from the 

definition. They were originaliy established in [P1] and like most other results 

from there which we quote here, appear now in [P3]. 

FACT 2.5: For U and E as above, 

(i) //" U = uUI for some finite collection of definable sets then 

(ii) Let U C_ M"  be a definable 

relations on U such that E1 

r, then 

dim 

set and let El,  E2 be two definable equivalence 

C_ E~ and such that for all ~ q U, dim ( % )  _< 

(E-l'l) -< dim (E-'22)+r. 

(iii) As in (ii), but replacing < by >_ in both places. 

(iv) Assume that V C_ M r is a definable set and F a definable equivalence 

re/at/on on V. Let f : U ~ V be a definable function such that for a/l 

Ul, U2 E U we have filEfi2 iff f(~tl )F f(~2 ). Then 

dim( ) 
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(v) I f  dim (-~) <_ l then for every generic ~o in U over A we have dim([~o]s) > 

d i m ( U )  - I. 

(vi) /~for a / /~  E U dim([~]s) >_ dim(U) - l then dim(U/E) _< l. 

We will make use of one more fact regarding definable equivalence relations. 

FACT 2.6: Assume that U and E above are A-definable. Let rio be generic in 

U over A and let ~o be generic over u0 in [71 = [fi0]g. Then rio is generic in U1 

over ~o. 

Proof: On one hand, dim(~o/~o) = dim(U1) >_ dim(~o/~o) (since U1 is ~o- 

definable). On the other hand, dim(~o/~o) = dim(~o~o/r - dim(~o/{~) < 

dim(~o~o/O) - dim(~o/r = dim(~o/~o). | 

2.3 GROUPS AND GROUP-INTERVALS. For the sake of simplicity, we make the 

convention that whenever we have an o-minimal group it is assumed to be an 

ordered group. We will make use of the following: 

PROPOSITION 2.7 ([PS]): Let .hA be an o-mimma/group. Then .hA has no 

definable subgroups except {0} and M. Hence, ./t4 is abelian and divisible. 

As a corollary, if A4 is an o-minimal group, then the binary function + is 

continuous. 

Definition 2.8: Let ,4,4 = (M; < . . .)  be an o-minimal structure with endpoints, 

say M = [a, b]. We say that A4 has a g roup- ln te rva l  s t r u c t u r e ,  or is a g roup-  

interval ,  if there is a 0-definable partial binary operation + in the structure 

satisfying: 

1. + is continuous, and strictly increasing in each variable. 

2. + is associative, where defined; i.e., (z + y) + z is defined if and only if 

x + (y + z) is, and then they are equal. 

3. + is commutative, when defined. 

4. There is an identity 0 in M and for each x E M an inverse - x ,  and we 

always have 0 + z = x and x + ( - z )  = 0. 

5. For c > 0 in M, the function z ~ c + z has domain [a, b + (-c)] and range 

[a + c, b]. 
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6. For e < 0, the function x ~ c + z has domain [a + ( -e) ,  b] and range 

[a,b+c]. 

The obvious example is a closed interval of an o-minimal ordered group. We will 

see below (Proposition 5.2) that this is the on ly  example thus the name group-  

in te rva l  is indeed justified. This definition is not quite identical with the one 

in [P1]; in particular, there commutativity is derived from the other properties. 

Also, in [P1] parameters are allowed in the definition of + and [a, hi. Our focus 

here is different; we are not interested in finding a group-interwl inside another 

structure, but rather taking a group-interval (or a group) as our basic structure. 

We are assuming then that whatever parameters are necessary have already been 

fixed. 

There are a few things to be said about this definition. First, a similar notion 

could easily have been defined without assuming the structure is o-minimal, but 

we stick to the o-minimal case. Several properties of o-minimal group-intervals 

were derived in [P1]; we will have use for three, besides commutativity. First, 

the operation is clearly torsion-free. A little harder to see is that  it is divisible; 

in particular, for any z in a group-interval, there is a unique element �89 so that  
1 1 ~x + ~z -- z. Finally, for any x, y in a group-interval, the sum ~z + 1_y2 is defined. 

We remind the reader here of the first theorem quoted in the introduction; any 

CF structure with nontrivial geometry has an interval which has a group-interval 

structure, definable in the original structure. 

Notice that  there is no restriction on what further structure a group-interval 

may have. We follow the usual stability-theoretic practice of using the word 

"group" for any structure with a 0-definable group operation on the universe, 

with possibly other structure. The same convention applies for "group-interval". 

Indeed, our plan here is to determine precisely which expansions of a pure ordered 

group (or group-interval) structure can be o-minimal and satisfy the CF property. 

In contrast to the convention for groups, we will use the term "ordered vector 

space" with almost complete strictness, allowing only expansions by constants. 

Once and for all, we define an o r d e r e d  vec to r  space (o.v.s.)  to be a structure 

Y = (V;+,<,O,d,a: d E D,a E Vol where D is some ordered division ring, 

V an infinite ordered D-space, and V0 some collection of distinguished points. 

(Without loss of generality V0 is a subspace of V, possibly trivial.) By an in te rva l  

in a n  o r d e r e d  vec to r  space  we mean a structure 2" whose universe is an interval 

I of V for some o.v.s. ]~, and this set is endowed with all the structure it inherits 



Vol. 81, 1993 LINEAR o-MINIMAL STRUCTURES 9 

from )2. We assume that the endpoints of I are in V0. Let L be the language of 

l); for every L-formula X(~) with no parameters, we have an I-predicate Px(~). 

For ~ _C I,  we have 27 ~ Px(a) if and only if l; ~ X(a). The interval in an ordered 

vector space is then the structure (I; Px: X E L). We normally assume (with no 

loss of generality) that for some c > 0 in V, I = [-c,  c]. 

For any structure .A4 and 0-definable X C_ M, we use the notation .h4 IX for 

the structure X created as 27 was created in the last paragraph. That  is, the 

language of A41X consists of the Px's as above, with the obvious interpretation. 

So in the last paragraph, 27 = ])]I. 

Here is perhaps the appropriate place to mention that for the structure 27 

just mentioned, we have quantifier elimination in a rather natural language. For 

z, y 6 I ,  define 
x + y  

x ( B y =  
2 

Also, let D' be the collection of all d 6 D so that d(I) C_ I. So d 6 D' if and 

only if [d] < 1. (We use the absolute value notation here and elsewhere in the 

obvious way for any ordered group; Ix[ is either x or - x ,  whichever is >_ 0.) In the 

language L' we take $ and the elements of D' as basic function symbols and also 

add names for all the algebraic points of 27. We let 2" be the obvious structure 

on I for L'. The claim is that Th(Z ~) eliminates quantifiers and that  27 and 27' 

are interdefinable, which term we will explain very shortly. We leave the q.e. to 

the reader; it's not much harder than the q.e. result for ordered vector spaces. 

The interdefinability of the two structures is an easy consequence of Proposition 

5.1 below. 

For Ml C M:2 two o-minimal groups or group-intervals we call a e M2 an  

in f in i t e s ima l  w i th  r e spec t  to  M1 if 0 < lal < b for all b # 0 from M1. a is 

inf ini te  w i t h  r e spec t  to  M1 if a > b for all b 6 M1. 

In the past few years, the word '~reduct" and its relatives have been used for 

various distinct notions. We therefore spell out exactly how we will use the words 

"reduct" and "interdefinable". 

Definition 2.9: Let A4 and A4' be two structures with the same universe M for 

possibly different languages. We say .h4 is a r e d u c t  of .A4' if for every n, all 

the subsets of M "  0-definable in A4 are also 0-definable in .A4'. Note that  we do 

no t  allow parameters in the definition. If each is a reduct of the other, we say 

that A4 and JP[' are in te rdef inable .  For two theories T and T',  we say that  
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T is a r e d u c t  o f  T' if there are structures .A4 and .hi' such that T = Th(A4), 

T' = Th(.M')  and .M is a reduct of .hi'. Similarly, we define T is interdeflnable 

w i t h  T'. 

3. The  CF property and linear theories 

Throughout this section we will assume that T is an o-minimal theory. Every 

structure J~ we consider is assumed to be a model of T. 

Suppose that W C_ M n+l is definable and that F: W --, M is a definable 

function. Let U C M "  be the projection of W on the first n coordinates. Then 

F genera'~es a definable family of (partial) unary functions ~" = {fs: ~ 6 U}, 

defined by .fs(z) = F(~, z). We say that 2" is con t inuous  if the function F 

is continuous on its domain. For fi 6 U, denote by Is the domain of fs .  For 

J C_ M and Ul, fi2 6 U, we say that fs~ [J = Is .  ]J if Is,  N J = I~, N J and for all 

z in that set we have f s , ( z )  = f s , ( z ) .  Y: induces the following two equivalence 

relations on U: 

Deflnition 3.1: (i) For J C_ M, define fi~ ~ j  fi2 iff fs~lJ = f~21J. 

(ii) For a E M, define fil ~a fi2 iff there exists a' > a such that  fil ~(a,a') fi2. 
| 

It is immediate that the two are indeed equivalence relations. They are definable 

with the parameters used to define U, .~', J and a. These equivalence relations 

depend on ~ but we use them only when it is dear which ~" we refer to. Notice 

that  if fa~, fa2 are not defined on any interval of the form (a, a') then fil ~~ fi2. 

For 2" as above, the relation ~~ induces an obvious equivalence relation on the 

fs 's.  We call the equivalence class of fs  with respect to this relation the  g e r m  

of  fs  a t  a and denote it by [fs]. By o-minimality, if fs~, f ~  are two functions 

defined on (a,a ')  then there is a] > a such that, on the interval (a,a~), either 

fs~ < fs~ or fs~ > fs2 or fs~ = fs~. It is easy to verify that this linear ordering 

induces a definable linear ordering on the germs at a. In particular, if 

dim (U_____) = 0 

then each equivalence class in ~ is definable with the same parameters that 
~ t t  

were used to define ,.~,. 

We can now define the CF property. 
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Definition 3.2: We say that A4 has  t h e  CF (Collapse o f  Famil ies)  p r o p e r t y  

if for every definable family of functions .~" = {fa: ~ G U}, and every a E M we 

have 

dlm (~--a) _<1. 

We also call such an A4 a C F  s t r u c t u r e .  | 

As we later show, in the presence of a group or a group-interval the CF property 

is equivalent to saying that all definable sets are semi-linear. 

PROPOSITION 3.3: / f  .h4 is an w-saturated structure then the following are 

equivalent: 

(i) .hd has the CF property. 

(ii)Assume that ~" and U as above are A-definable. Let a be in M and assume 

that h0 is generic in U over aA. Then there is a neighborhood V C_ U of  ~o and 

a' > a such that 

The proof is immediate once we establish the following lemma: 

LEMMA 3.4: Let .M be an w-saturated model. Let U, ~" and a be as before 

and assume that U end . f  are A-definable. Then: 

(i) 

dim ( U---- 3 < t ,  

then for every uo generic in U over aA there is a delqnable neighborhood V C_ U 

of  ~to and a' > a such that 

(ii) Assume that for every A-detlnable subset Uo C_ U and [or every generic 

rio G Uo over aA there is a neighborhood V C_ Uo of  h0 and a ~ > a such that 

Then 

dim(  <l 

dim(  <l 
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Proof." Without loss of generality A = 0 and a is 0-definable. Let dim(U) = k. 

In the following argument all equivalence classes of the form [~]E are taken in 

U. 

(i) Let rio be generic in U over 0 and fi0 generic in [rio]~, over fi0. There is then 

al > a such that  f~o[(a, al) = frol(a, al). Clearly, if a2 E (a, al) then we still 

have f~o[(a, a2) = f~ol(a, a2). So without loss of generality, a, ~ dcl(fi0fio). By 

Fact 2.6, uo is generic in [rio]~, over %, hence it is also generic there over alfio. 

It foUows that  there is a neighborhood Vl _C [fi0]...o of rio such that  for every 

E V1 the formula f~l(a,a~) =/~ol(a, al) holds. In particular, this implies that  

Vl C_ [~0]~(..,,) and therefore dim([~0]~(~ = dim([fio]~.) > k - l (the latter 

by Fact 2.5 (v)). 

Pick a' E (a, al), not in dcl(fLo). Since [~o]~(o,.,) C_ [~o]~(.,.,) C_ [~o]~~ we still 

have dim([fio]~(.,.,)) >_ k -  I. Let ~o(fio,a ~) be the formula saying 'dim([fio]~(~176 

> k - 1 '  and let V = {fi E U: .M ~ ~(~,a')}.  t~0 is in V and since it is generic in 

U over a' we have dim(V) = dim(U). By Fact 2.5 (vi), we have 

dim ( ~ )  < 1. 

(ii) We will use induction on dim(U). Let fi0 be generic in U over 0. There is a 

neighborhood V C__ U of fi0 and a' > a such that  

dim ( ~ )  ~_ k -  I. 

But then, by Fact 2.5 iv), dim([~o]~(~ n V) > k - I, which implies that  

dim([fio]~.) _> k - I. 

Let U1 = {fi q U: dim([fi]~.) > k - I}. Then 

dim (U---~,) < / .  

The above argument shows that  dim(U \ UI) < k hence, by applying induction 

to U ,, U1 (U~ still satisfies the hypothesis of (ii)) we have 

But, by Fact 2.5 (i), 

dim (Y--~)= max{dim (U--~-l),dim ~U~----~)} < l .  II 
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Using the equivalence in Proposition 3.3 we can now rephrase a result from 

[P1]. 

PROPOSITION 3 .5 : I s  is a locally modular structure then it has the CF prop- 

erty. 

Remarks; 

1. The standard example of a CF structure is a~n ordered vector space. This 

structure is also modular. However, as Example 4.5 shows, .~  may have the CF 

property and not even be locally modular. A standard example where the CF 

property fails is a real closed field, where the family of curves given by { fu~= 2 (x) = 

ulz  + u2:u l ,u2  �9 R} doesn't collapse at any point in R. 

2. If A4 is a CF structure and A/" - ~ then Af is also a CF structure (the CF 

property clearly can be written as a first order scheme). We call a theory T a 

CF theory if it has a CF model. Note that the CF property is preserved under 

reducts, hence the following converse of Theorem 1.3 holds: If .M is an ordered 

reduct of (an interval in) an ordered vector space then A~! has the CF property. 

3. We should point out that one can define another equivalence relation Ea 

similar to "~a, but  instead of considering a r > a we could have considered a I < a. 

One can show that .A4 is a CF structure iff for every ~', U and a we have 

dim ( ~ - : ~ ) _ 1 .  

We can also define another equivalence relation, call it ~o, by: fil ~ fi2 iff there 

are al < a < a2 such that fa, l(a~,a2) = f~,l(a,,a2). One can show that M is a 

CF structure iff for every generic a �9 M we have 

Definition 3.6: For A C_ M, a point a �9 M is called n o n t r i v i a l  ove r  A if there 

is an A-definable partial function h(z, y) such that h is defined, continuous and 

strictly monotone in both variables on some A-definable neighborhood of the 

point (a, a). a is called non t r i v i a l  if it is nontrivial over some A _C M. | 

If f ( x )  is a definable function and a �9 M, then limz.-.a+ f ( x )  (the limit from the 

right of f (x ) )  is always defined and is in M U {:i=cr For ~" = {fa: fi �9 U} a 

definable family of functions and for a �9 M, b �9 M U {=l:r we define Uab = 

{fi �9 U: limz._.,+ f ( x )  = b}. 
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PROPOSITION 3.7: (i) Assume that A4 has the CF property and that a is a 

point in M, nontrivial over some set A C_ M. Suppose that .T = {f~: fi �9 U} 

is an A-definable continuous family of functions, each defined on some interval 

(~,a'(@. Then, for eve~  b �9 M U {+o~} we have 

dim ( - ~ ,  b) = 0 .  

(ii) Assume that .M does not have the CF property, then there is a definable jr, 

as above, and a point a 6 M, such that 

dim (-~-~*) _> 1. 

Proof." (i) Let h(x, y) be strictly monotone in both variables on some neighbor- 

hood of the point (a, a) and let .T', U and b be as above. By restricting ourselves 

to U~b we will assume that U = [Tab. We may assume that there is fi0 6 U such 

that [f~0] is not the germ of a constant function (for otherwise we are done). 

Replacing .T" by the family {f:~f~: fi �9 U} (where fr~,lf~ is taken where defined, 

i.e. on some interval near a), we may assume that a = b. We need to show that 

$" has only finitely many germs at a. Assume that there are infinitely many such 

germs, all "going through" the point (a, a) (see Fig. I). 

(a,~) 

a, e) 

(a,d) 

(a,c) 

Fig. I Fig. II 

Consider the following family of functions: 

g~,(x) = h(t, f~(x)). 

By the continuity of 5 r, there is a neighborhood V C_ U of fi0 and a s > a such 

that got(x) is defined and continuous for all 9 6 V, t 6 (a, a') and x G (a, a'). Let 



Vol. 81, 1993 LINEAR o-MINIMAL STRUCTURES 15 

I = (a,a ~) and ~ = {got: ~ E V,t  E I}. The monotonicity of h in both variables 

ensures that ~ is a union of infinitely many translates of .~. The germs in any 

two such translates "go through" different points (a, c), (a, d) (see Fig. II). Using 

the properties of quotients from Fact 2.5, one can show that 

dim ( - ~ / )  _> 2 

(with respect to ~), contradicting the CF property. We leave the details to the 

reader. 

.T" = {f~: fi E U}and a E M witness the failure of the CF property. (ii) Let 

Namely, 

dim ~ - ' 2  > 2. 

Notice that if there is b E M U {=t=~} such that 

then, as in part  (i), we may assume b = a and we will be done. Let U1 be the union 

of all the U,b'S, b E M tJ { + ~ } .  It is easy to verify that dim (~--:,) = dim (v--~,). 

For fil,fi2 E U1, define filE~2 iff fil and ~2 are in the same U,b. It is easy to see 

that 

and by Fact 2.5 (ii), there is b E M U {-1-~} such that 

. 

Assume now that A~ = (M; +, < , . . . )  is an o-minimal group, or a group- 

interval. First we make the following definition. 

Definition 3.8: For .M as above, let f be a definable partial function from a 

definable set U C_ M "  into M. 

(i) We say that f is l inear  on U if the following hold: 

For .M a group, given xl,x2 E U and t E  M ", 

if ~1 + t, 5:2 + t E  U then f (x l  -I- t-) - f(~h) = f(x2 + t-) - f(x2).  
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For M a group-interval, given ~1,~2 E U and tG  M n, 

if ~l /2 + t/2, x2/2 + t/2 E U 

then f(~x/2 + ~/2)/2 - f (~ l /2 ) /2  = f(~2/2 + ~/2)/2 - f(~2/2)/2. 

(We divide by 2 to ensure that + and - are defined.) 

(ii) We say that f is piecewise l inear  on  U if we can partition U into definable 

sets U1, . . . ,  Uk such that f is linear on each U 1. 

PROPOSITION 3.9: Assume that .M has the CF property. / / ' / ( z )  is a definable 

function from an interml (a, b) C_ M into M then f is piecewise linear on (a, b). 

Proof: We prove the result for a group .s The proof for a group-interval is 

similar. 

Without loss of generality we may assume that  f is continuous on (~, b). Define 

the following family of partial functions parametrized over (a, b). For z E (a, b) 

and t > 0, let 

gz(t) ---- f(x + t) - f(x). 

Notice that every g~ is defined on some neighborhood of 0 and that  for all z we 

have gz(0) = 0. The point 0 is a nontrivial point over 0 since the function x + Y 

is defined in some neighborhood of (0, 0). 

Now, using Lemma 3.7, we know that 

dim ( ( a ~ ) = 0 .  

So, by partitioning (a, b) into finitely many sets we may assume that  (~,b) contains 
~ 0  

a single class. Namely, given any z l ,  z2 E (a, b), 

3 ,  > ovt e ( 9 , , ( t )  = g , , ( t ) ) ,  

which means 

(i) 3e > OVt C [0, e](f(xa + t) -- f(xl) = f(x2 + t) -- f(x2)). 

To conclude the proof we want to omit the e -restriction in the above statement. 

Given any xl ,  x2 E (a, b), let m = min{b - xl,  b - a2}. Define 

Lz~,z, = {e C (O,m): Vt, O < t < e,f(xl + t) - f(xl) = f(x2 + t)- f(x2)). 
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It is sufficient to show that Lzl,~ 2 = (0, m). 

By (1), Lxt,x2 # 0. By the definition of Lx~,~, and the continuity of f ,  it is 

clearly a closed set. To see that it is open, assume that e E L~1,~2. Since f is 

continuous we have f (xx  + e ) - f ( x l )  = f ( z2  + e ) - f ( x 2 ) .  By (1), there is an el such 

that  for all 0 < t < '1 we have f ( x l  + , + t ) - f ( x l  +e) = f (x2  + e + t ) - f ( x 2  +e). 

Putting the two together we get 

f ( x l  + ~ + t) - f ( x l )  = f (x2 + e + t) - f(x2), 

which implies that (0, e + ex ) C_ Lx~,x2. 

So, L~t,z 2 is a clopen set but since every interval is definably connected we 

have L~I,~ 2 = (0, m). | 

PROPOSITION 3.10: Let (a,b) C M be an interva/containing 0 and assume 

that f :  (a, b) ---, M is a ~-definable function, linear on (a, b), for which f(0) = 0. 

Then there is a O-definable function g and a ~-definable interva/(al ,  ba) _C (a, b) 

containing 0 such that f l (a l ,  bl) = gl(al, bl). 

Proof: Assume that  ~" is in M" .  Let W(x,y,C') be the formula defining the graph 

of f .  The above definition of linearity makes it clear that this is a first order 

notion in the language of Ad. We may assume then that  for every fi, the formula 

~(z, y, fi) defines the graph of a linear function fa on an interval containing 0 

and that f(0) = 0. 

Consider the family of functions {fa; fi E Mn}. By Lemma 3.7 we know that 

dim = O. 

Hence, as we have already commented, [~]~0 is O-definable. But since every 

function in [fe] is linear and agrees with fe on some interval containing 0 it must 

agree, by o-minimality, everywhere on their common domain. Take now g to be 

the union of all functions in [re]. g is O-definable and we can define (al,  bl ) to be 

the interval on which g agrees with fe. This interval is clearly ?.'-definable. | 

Definition 3.11: Let T be an o-minimal theory of a group or a group-interval. 

We say that  T is l inear  if Proposition 3.9 and Proposition 3.10 hold when we 

replace .s by any model of T. | 
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As we have just shown, if T has the CF property then it is linear. Our work 

below implies that the converse is also true (one may also verify it directly). 

4. Partial  endomorphi sms  and the  modu a r  case 

We fix, for the purposes of this section, an o-minimal theory T so that any 

A4 ~ T is either a group or a group-interval, with operation +. We call a 0- 

definable partial unary function f of M ~ T a pa r t i a l  e n d o m o r p h i s m  (p.e.)  

if: 

1. The domain of f ,  dom(f), is either all of M or ( - c ,  c) for some c > 0; 

2. Whenever a, b and a + b are all in dom(f) (so in particular a + b is defined) 

then f(a + b) = f(a) + f(b). 

Notice that  because + is continuous with respect to <, any partial endomorphism 

is, too. Obviously, the fact that a formula of two variables defines the graph of a 

p.e. is independent of the particular model .A4 chosen. 

It is clear that if f and g are p.e.'s, then f+g,  fog, - f  and f -1  (if f # 0 on its 

domain) are also p.e.'s. Here for example, the domain of f+g  is dom(f)Ndom(g). 
We define an equivalence relation E on p.e.'s by lEg  if and only if for all a E 

dora(f) N dora(g), we have f(a) = g(a). 

PROPOSITION 4.1: Suppose f and g are p.e.'s. 
(1) II t there is some a > 0 in dora(f) f3 dora(g) such that f(a) > g(a), then/'or 

any b > 0 in the common doma/n, f(b) > g(b). 
(2) I l l (a)  = g(a) for some a # 0 in their common domain, lEg. 

Proof." (1) By the assumption and the continuity of f and g, the set {x > 

0: f(z)  > g(x)) is open and nonempty in dora(f) n dom(g). If its infimum 

c is positive, choose any c' in the set so that c' < 2c; we have f(c ' )  > g(c') 

but f ( ~ )  < g(~-), a contradiction. Thus c = 0. Now if this set is not all the 

positive elements of dora(f) N dora(g), let d be the supremum of the first interval 

it contains. Consider f ( { )  and g(~). Thus f(b) > g(b) for all b > 0 in the 

common domain. For (2), notice that if it is not the case that fEg, we have 

f (a)  # g(a) for some nonzero a in dora(f) n dora@), Without loss of generality, 

f(a) > g(a) and a > 0. By (1), f(b) > g(b) for all b > 0 in the common domain, 

so f(b) < g(b) for all b < 0 in the common domain. This gives (2). | 
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It is now clear that E is a congruence for the operations mentioned in the 

paragraph preceding the proposition. Further, the E-classes are naturally or- 

dered: f i e  < g / E  if and only if for some (any) a > 0 in dora(f) N dora(g) 

we have f (a)  < g(a). The proposition makes it clear that the choice of f ,  g in 

their respective classes and a > 0 is irrelevant. Thus the collection of E-classes 

naturally forms an ordered division ring, which we will call D. Also, since any 

definable partial function in any o-minimal structure is piecewise monotone, an 

easy consequence of this proposition is that any p.e. not constantly 0 on its 

domain is either order-preserving or order-reversing (depending on whether its 

E-class is > 0 or < 0). 

If T is linear then, for any a _C M, every p.e. 0-definable in Th(./t4, ~) is the 

restriction of a p.e. 0-definable in ,4,4 to an E-definable set. Also, if a E acl(b) for 

a, b E .M ~ T there is a 0-definable linear partial function g so that a = g(b). 

We may choose g which has domain (u, v) and range (u', v'), where u, v, u', V' are 

all algebraic points. If 0 E (u, v), let e = 0 and e' = g(0); if u > 0, let e = u 

a n d e '  = u ' , a n d i f v  < 0, let e = v a n d e '  = v'. In any case, we see that by 

translating g to the origin and then extending it in an obvious fashion we have 

that there is a p.e.f  such that a = f(b + e) + e', where e and e ~ are algebraic 

points. It is clear also that if T is linear, .M ~ T and b C_ M, then Th(JVl,b) is 

also linear. Thus for any c e acl(a,b) in A,t, we have that c = f ( a  + bl) + b2, 

where each of bl, b2 is algebraic in b and f is some p.e. This will be used in the 

following. 

PROPOSITION 4.2: Suppose that T is a linear o-min/mM theory. Let ~4' be the 

reduct o[./~4 ~ T to the language L' containing, +, <, names for the elements of  

acl(~) C_ A,4, and a symbol/'or each (O-definable) p.e. of  .It4. Then .h4 and .It4' 

are interdefinable. 

Proof." We show by induction on n that any subset of M "  0-definable in .M is in 

fact 0-definable in .M'. This is clear for n = 1, and by Corollary 2.2, we need only 

check that any partial function h from M "  to M 0-definable in .s is 0-definable 

in .M'. By induction, we may assume that the domain of h is 0-definable in .hi'. 

Fix A/" ~ T which is [T[+-saturated and suppose that a, b is in dora(h) taken 

in Af. As noted above, for c = h(a, b) we have a p.e.f  and bl, b2 E acl(b) so 

that c = f ( a + b l ) + b 2 ,  f is in L'. Write bi = gi(b), where each gi is by 

induction 0-definable in .s Again by induction, for each such triple f ,  gl, g2 the 
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set {(x, 0): h(x, O) - f ( x  + 91(0)) -4- gu(Y)} is O-definable in .h4'. By compactness 

the domain of h is the union of finitely many such sets. | 

The above proof makes it clear that in any model of a linear theory, any 

definable function of any number of variables is piecewise linear. 

Our next project is the following: 

LEMMA 4.3: Fix any .M ~ T as above, and suppose that T is locally modular. 

Let f be any p.e. Then there is a partial endomorphism g with domain all of 

M such that either g E l  or g E f  -1 . I fA4 is a group, then we can always choose 

gE f with domain all of M.  

Proof." By naming some points, we may assume that T is modular. Notice that  

by the linearity of T and by 4.1(2), we don't get any new p.e.'s whose domain is 

all of M when we name these points. Let us call a p.e. t o t a l  if its domain is all 

of M and (for M = [-a ,  a] a group-interval) nea r - t o t a l  if its domain includes 

[ -~ ,  ~] for some natural number n. In case .M is a group, we use near-total as 

a synonym for total. Consider the set 

7- = {jr,: f ,  a p.e. which is not near-total} 

and for any Af ~ T, the partial type 

PN = {z + e is either undefined or not in dom(f ' ) :  f '  E ~', e C N} .  

(In case our structure is a group, any element infinite with respect to N satisfies 

PN.) We claim that this type is consistent. Indeed, if it isn't we have e l , . . ,  ck E 

N and f l , . . ,  f* p.e.'s in ~" so that every element of N is in one of - e i  +dom(f i ) .  

We can suppose that  f l  has the largest domain of all the fi 's; but then finitely 

many translates of dora(f1) cover all of N, clearly contradicting that f l  is not 

near-total. 

For our given model .M, choose any b ~ PM and then c independent (with 

respect to the algebraic closure) from b over M such that b - c is infinitesimal 

with respect to M; in particular, b - c  is in dora(f) for any p.e .f  and also c ~ PM. 

Notice also that f (b  - c) is infinitesimal with respect to M. Choose any Af ~ T 

containing M U {b, c} and then d realizing PN. Now let e = f (b  - c) + d; it is 

immediate that e ~ PN. 

Now by the modularity of any model containing all of our points, we have some 

element u E acl{b, d} f3 acl{c, e} not in acl(~). So there are p.e.'s h and k with 
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11, = h ( d  "4" b 1 ) -4- b2 = k ( e  3 I- r ) -1- c2, where  b,, b2 are  a lgebra ic  in b and  c , ,  c2 in 

c. We must have both h and k near-total, and we may assume they are in fact 

h *  k * total. To see this, notice that  the functions naturally denoted by (~)  and (g )  

are total for suitable n; replace h and k by these, and then replace u, b2 and c2 by 

their n th  parts.  Thus u = (h(d) + h(bl)) + b2, and letting b' = h(bx) + b~ (which 

is defined) we have u = h(d) + b' and b' E acl(b). Similarly, there is c' E acl(c) 

so that  u = k(e) + c'. 

It is easily seen that  h = k. For we have now h(d) + b' = k(/(b - c) + d) + c'. 

Since d is independent from b, c there is an interval I around d such that  the lat ter  

equation holds with any d' E I replacing d. In particular, by taking e > 0 small 

enough we have h(d + ~) + b' = k(f(b - c) + d + e) + c', and hence h(d) + h(e) = 

k ( / ( b - c ) + d ) + k ( e ) + d  (h and k are defined at e). It follows that  h(~) = k(e) and 

hence h = k. Now we have h f ( b - c )  = b ' - d  = (9x(b+ex)+e2)-(g2(c+e3)+e4) 

where 9x and 92 are p.e. 's and the ei's are algebraic. We must  have each 9i near- 

total, and by replacing them and h as above, we may assume they are total. So 

we have for algebraic e', e" that  hf(b - c) = (gx(b) + e') - (92(c) + e"). 

Since b is independent from c (over 0) we may take e > 0 small enough and 

get, as above, hf(b - c) + hf(e) = (gx(b) + g,(e) + e') - (g2(c) + e"). It follows 

that  hf(e) = g~(e), hence hfEgl .  Similarly, hfEg2 and in particular gx = g2. 

We now assume (as we may) that  f is not equivalent to 0; we have that  

fEh-Xg l  and f-XEg~Xh. If the range of gx is contained in the range of h, which 

is of course the domain of h -x,  we set g = h-Xgx; otherwise we set g = g'ZXh. We 

have g total  and either f E g  or f -XEg.  We may as well notice here that  for .A4 

a group-interval, we can have g total only if - 1  < g / E  < 1 in the division ring 

D. For .h,4 a group, on the other hand, i fg  # 0 is total, then so is g-X, because 

its domain is the range of g, which is a nonzero subgroup of M. But the only 

definable subgroups of M are {0} and M (Proposition 2.7). | 

We have more work to do to finish our description of modular  group-intervals, 

but at this point we can easily describe all groups whose theory is o-minimal and 

has only modular  models. 

THEOREM 4.4: Suppose T is o-minimal, modular, and that M ~ T is a group. 

Then M with its [uli structure is interdefinable with an ordered vector space. 

Proof: We set D to be the set of all 0-definable additive endomorphisms of M .  

Since every p.e. is the restriction of a total endomorphism to some 0-definable 
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interval, they are all 0-definable in the given structure. So this D is essentially the 

same as the D mentioned above. The result is now immediate from Proposition 

4.2. | 

Example 4.5: Let 7~ be the structure (R; +, <, f ) ,  where f is the partial func- 

tion defined on ( - 1 , 1 )  such that f ( x )  = ~rx for every x in its domain. Th(7~) has 

models which are not locally modular, as the argument for the lemma demon- 

strates. Of course T~ itself has modular dependence relation, as its algebraic 

closure operation is the same as that of ~ '  = (R; +,  <,  g), where g(z) = rrx for 

all x �9 R. g l ( -n ,n )  is easily seen to be definable in Th(T~) for any natural 

number n, but not in a uniform manner. This example indicates that a reduct 

of a structure whose theory is o-minimal and modular need not be (even locally) 

modular. Th(Tt) is easily seen to be linear. 

5. Embedding  a group-interval in a group 

In this section, we will continue our investigation of o-minimal linear theories of 

group-intervals. But first, we prove a quite general result about ordered vector 

spaces with extra structure on some bounded subset. We set up some notation 

first. Let (V; +, <,d:  d �9 D) be an ordered vector space over D and I -- [ -a0,  a0] 

be a closed interval of V. Let 79 be any collection of subsets of I n, for various 

n, containing all those a0-definable in the vector space structure. For simplicity 

assume that any predicate 0-definable in (I; P: P �9 79/is already in 79. We use Y 

to abbreviate the structure (V;+,< ,d ,  ao,P: d �9 D , P  �9 79) and for any Y* :L'_ ]) 

set I* = [-a0,a0] evaluated in Y*. 

PROPOSITION 5.1: We use the notation of the previous paragraph. 

(1) T h( ]) ) admits elimina*ion of quantit~ers. 

(2) Let X(~, fj) be any 12-formu/a and ~ C_ 12" ~ ~). Then there is b C I* in 

the vector space closure of 5 and P(~, 5) �9 79 so that X(])*, ~) N (I*) m = 

P(~*,b). 

Proof: First notice that by replacing the formula X, we may assume that 

~ = ( a l , . . . , a k , a k + l , . . . , a , )  where ax , . . . ,ak  E I* and a k + l , . . . , a ,  are lin- 

early independent over I* in the D-space structure. To see this, we use the fact 

if b is in the D-closure of {a l , . . .  ,a i )  and this set is minimal such, then ai and 

b are definable from each other over the previous aj's; whenever possible, we 
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apply this to replace any ai by an element of I*. Having done this, our b will be 

Now any automorphism of (I*; P: P E ~P) extends uniquely to a D-space auto- 

morphism of the D-closure of I*; it necessarily preserves the order. Because this 

closure is convex in V*, we can extend this to an ordered D-space automorphism 

of V* which fixes ak+l , . . ,  a , .  This gives us that if ~ is another sequence in V* 

with the same quantifier-free type as a, there is an automorphism of V* taking 

to ~. With this observation, (1) easily follows. 

To see (2), if the conclusion were false, there would be V** _ V* having an 

automorphism which fixes b but moves the set X(V**, a)f3(I**) m. We restrict this 

to I** and extend this restricted function to an ordered D-space automorphism 

of P** fixing a k + l , . . . ,  an. This is then a full automorphism of V** fixing a but 

moving X(V**), obviously a contradiction. I 

The above result clearly implies that if we start with an ordered vector space 

V and enrich the structure by additional predicates on a bounded subset B, then 

anything definable in the new structure is in fact definable in a quantifier-free 

fashion using (perhaps other) predicates on B and the ordered vector space terms. 

Special cases of this have appeared in [PSS] and [P1]. 
Our next project is to embed a group-interval .Ad in a group which reflects 

many of its properties. Very little of the strength of o-minimality is used in the 

construction, but here we will only consider the o-minimal case. We recall the 

facts that  .A4 is abelian (where the operation is defined), that every element has 

a unique "half", and that for any a, b in M, ~ + ~ is defined. 

We create a group (A; + , . .  "/ containing M in the following fashion: Let 

A = (M x w) /E where (a, n)E(b, m) if and only if a_a_ b (We then have 2 n ~ 2---~-. 

(a ,n )E(~ ,n+l )E(~ ,n+2)  . . . .  ) For (a,n),(b,m) e M xw with n > m there is a 

unique b' with (b,m)E(b',n) andwese t  (a ,n ) /E+(b ,m) /Z  ~ b' = ( ( ~ + u  

The fact that + on M is commutative when defined ensures both that this is well- 

defined and that it equals (a+b', n) when the latter is defined. It is readily checked 

that this endows A with an abelian group structure and that a ~ (a, O)/E is an 

embedding of M into A. We will henceforth identify M with its image under this 

map. 

Since (M; +, </  is a group-interval it is divisible, and + is continuous with 

respect to <. It is easily seen that (A; + /w i l l  be divisible and if we order it in 

the obvious way ((a, n)/E < (b, n) /E if and only if a < b in .A4), + remains con- 
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tinuous with respect to <. We let 79 be the collection of all 0-definable predicates 

of any number of variables in .s and consider the structure 

(A; +, O, q, <, P, ao : P E 7 9, q E Q). 

Here we regard a rational q E Q as a 0-definable (in (A; +)) function on A, and 

a0 is the upper endpoint of M inside A. It is clear that M is a closed interval 

in A. The following summarizes our construction and demonstrates that several 

relevant properties pass from a group-interval to the group created from it. 

PaOPOSITION 5.2: Let ~4 = (M; +, < , . . . )  be a group-interval. Then there 

is a divisible ordered abelian group ,4 = (A; +, < , . . . )  such that M is a closed 

interval of  A and the structures .It4 and AIM are interde~nable. `4 is o-minimal. 

Fhrther, if.If4 is a CF structure, so is ,4. 

Proof.: Let ,4 be the structure described above. It is clear that  A,4 is a reduct of 

,41M. The converse is an immediate consequence of Proposition 5.1 with Q = D. 

We now check that  ,4 is o-minimal. By the quantifier elimination result above 

(Proposition 5.1), we need only check that any atomic formula with parameters 

from A and a single free variable defines a finite union of points and intervals. 

We may assume (as A = Uneo, nM) that the parameters and constants a come 

from M. The atomic formulas in one variable x with parameters (including 

constants) a are equations and inequalities of terms in the pure Q-space language 

and formulas of the form P ( t l ( z , 5 ) , . . .  , t~(z ,~)) ,  where P is 0-definable in .s 

and the ti's are terms of the pure Q-space language. 

The intersection of the set defined by such a formula and M is a union of 

intervals and points, and the same is true for n M  for any n E w (since .AIM 

and ,4 lnM are isomorphic via the map x ~-* nx). But there is a natural number 

n such that  the given formula ( P ( t l , . . . , t k ) )  implies -nao  < x < nao because 

for all i, we have t i(z,  ~) = qiz + ai where ai is in the Q-space closure of a and 

qi E Q, and for at least one i qi ~ O. 

To verify that ,4 has the CF property, it is easiest to use the characterization in 

Proposition 3.7. If ,4 is not a CF structure then there is a family ~" = {f~: fi E 

U}and a point a E A such that 
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But now, we can use + to transfer a to a point in the interior of M. Since every 

(interior) point of a group (or a group-interval) is nontrivial we get a contradiction 

to the fact that Ad is a CF structure. | 

6. E m b e d d i n g  a group in a v e c t o r  space 

Our purpose here is to embed a group A whose theory is o-minimal and linear 

into an ordered vector space in a natural way. More specifically, we will prove 

the following: 

THEOREM 6.1: Suppose that A is an o-minimal abelian group with linear 

theory. Then there is an elementary extension 1)' of A which is a reduct olin, an 

ordered vector space. 

This result will lead quickly to a characterization of modular and linear group- 

intervals. We first prove an effective quantifier-elimination result for T h ( A )  in 

an appropriate language. 

For any p .e . f  of .4, we consider the total function (denoted by ] )  which is the 

same as f on its domain, and whose value is constantly zero off dora(f). We 

prove q.e. for T h ( A )  in the language L with +, < and these function symbols, as 

well as names for the algebraic points. We will call the collection of all algebraic 

points A0; notice that the endpoints of dora(f) for any non-total p .e . f  are in A0. 

The q.e. will follow immediately from the following: 

PROPOSITION 6.2: For any L-term t (z ,~) ,  there are terms 81(if),... Sn(ff) ayld 
formulas pi( z,  ~), (i = 1, 2, 3) so that each pi is a Boolean combination of formulas 

that say z = sj(.~), z < sk(fl), z > sz(fl) and: 

.4 ~ t(x,#) > o .~ pl(z ,#) ,  

.4 ~ t(z, ~) < o r p~(x, ~), and 

.4 ~ t(x, ~) = o ,~ p3(~, ~). 

Proof." We define the notion of the x-depth of a term (with free variables z, 

and parameters from A0) as follows: 

1. dp(z) = dp(s(#)) = 0 (any s(~)) a term involving parameters from A0 but 

no occurrence of z); 

2. @ ( - t )  = @(t); 
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3. dp(t 1 -{- t2) ~--- dp(~l) -~- dp(t2); and 

4. if t is any term involving an occurrence of z and f any p.e., dp(.f(t)) = 

dp(t) + 1. 

Notice that  for terms of x-depth 0, the assertion is trivial. We prove the assertion 

by induction on depth (x will remain fixed throughout). Any term can be written, 

without changing its depth, as 

t (z ,~)  = ]l(t~(z, ft)) + . . .  + h ( t k ( z ,~ ) )  + mx + s(ft). 

(Here m is an integer.) We may assume none of the fi 's  is constantly zero; for 

each fi we let ( -a i ,a i )  be its domain and (-bi,bi) its range. We suppose that 

we have proved the assertion for terms of smaller depth, and break into 3 cases: 

1. m = 0. This is the main case. Pick i with bi maximum. We may assume 

that i = 1 and that f l  > 0. Now let h(x) = k f l l ( ~ x )  for z e ( -kb l ,kb l ) ,  
h undefined elsewhere. That is, h is just f~-I extended to a larger interval. 

Then we have that h is a p.e., and as long as [tll < al and ]s(ff)l < kbl, 
that  

A ~ t > o r  tl + h(/~(t~(x,~))) + . . .  + h(~(~))  > o. 

Let  g i ( x )  = h ( f i ( x ) )  for  x �9 ( - - a i , a i )  and  i = 2 , . . . - } - k .  W e  have, ac tua l ly ,  

~ t > o ~ {(Ital >__ al) A f=(t=) +... + A(t~) + s(~) > 0} V 

(Itll < al A[(Is(Y)I < kb~ Atl -I-~2(t2)-I-... ~k(tk)-l-h(s) > 0)Vs(ff) >_ kbl]}. 

The terms involved in the above expression have lower depth than t, so we 

finish this case by induction. (We deal similarly with the formulas t < 0 

and t = 0.) 

2. m # 0, and at least one ]/(ti) has depth I. Suppose dp(]l(~l) ) = I, so ~1 

is tx  + u(fl), where s # 0. Let f~ = ~fl + m on ( - a l , a l )  and 

Then, for 

81 = 8 -- 7U.  

u 
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we have 

u u m 
] l (e~ + u) + . ~  + s = e] l (~ + ~ )  + m(~ + ~ )  + (s - 7 u )  

which is equ~ to ]I(~ + ~) + s '  We have 

u u 
,4 ~ { -a l  < x + ~ < a, At = ][(x + ~) +.~(t2) . . .  h(tk)  + s'} V 

u 
{Iz + ~1-> a~ ^ ( t  > o ,~ L( t~)+  . . . + s  +rex  > 0)}. 

With this substitution we reduce to the previous case. 

3. Not case 1 or 2. Then t is A ( t , )  + ' "  + h ( t~ )  + - ,~  + s, where every t, 

has positive depth and m r 0. We deal with this exactly as in the first 

case, except that now our main replacement term for t is tl + ~2(t2) + 

�9 .. + ~k(tk) + h(mz + s). This has the same depth as t, but it now falls 

under either case 1 or case 2, depending on the depth 0 part of t l .  This 

completes the proof. 

1 

COROLLARY 6.3: Lu the language described above, Th( A) eliminates quantifiers. 

Proof." Just like for ordered vector spaces. | 

We should note exactly which axioms of Th(~t) were used in the above proof. 

We need that (A; +,  <) is an ordered Q-space. For each p.e.f ,  say with domain 

( - a s ,  al) , we require an axiom stating that ](x + y) = ] (x )  + ](y) if x, y, x + y E 

( - a s , a t )  and ] (x )  = 0 for Ixl _> at. We need the w i o u s  relations that hold 

among the p.e.'s; for example that ](x) + ~(z) = f +"-"g(z) for x E dora(f) n 
dom(g), or if we have that dom(f) C_ dom(g) and that f (x)  = g(x) on dora(f) 
we need to include ](z) = ~(x) for - a  t < x < a t as an axiom. Finally, the 

equations and inequalities among quantifier-free terms should be included. The 

collection of all such sentences therefore provides an axiomatization of Th(~4). 
We define dora(t) (the "real domain" of t) for any L-term t(:~). First, if 

f '(2~l,..., .Tk+l) = ~(Xl, . . . ,Xk) , then dom(t') = dom(t) x A. For x a vari- 

able, dorn(x) = A; for a E A0, regarded as a 0-ary term, the notion is vac- 

uous. If t(~) = tl(~') + t2(~), then dora(t) = dora(t1) N dora(t2). Finally, if 

t(~) = ](s(~)) for f a p.e., dom(t) = {~ e dom(s): s(~) e dom(f)}. Notice that 
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dom(t(z~,.. . ,  xk)) is always 0-definable in our chosen language, and is in fact an 

open neighborhood of 0 in A k. 

We recall the division ring D associated naturally with any A satisfying the 

hypotheses of Theorem 6.1. We identify two p.e.'s f and g if they agree on 

some (any) nonzero element of dora(f) N dora(g); the equivalence classes are the 

elements of D. We will write d! for the element of D corresponding to the p . e . f .  

Choose an IAl+-saturated elementary extension .4' of .4. Let V be the set of all 

infinitesimal elements of .4' together with 0. It is readily seen that V inherits art 

ordered D-space structure, call it 1J, from .4', with d s = f lV.  Given any L-term 

t(~), we let t*(~) be the corresponding term of the vector space language, i.e., 

replace any ] by d I. Similarly, for any formula X(~:) of the form 

> 0 ^ A = 0 

of the language of .4 again involving no constant symbols except 0, we write X* 

for the corresponding formula of the ordered vector space. 

We aim to find an embedding a of A into V so that for every L-term t and 

?t �9 dora(t) we have 

.4 p t(a) > o ~ v p t '(,,(a)) > o. 

Also we show the corresponding result if A ~ s(a) = 0 for a term s. This 

amounts to realizing a type p inside Y of a collection of formulas with IA[ vari- 

ables, where each formula has the form X*(~) for X as described above. So we 

will prove by induction on the number of variables ~ that if .,4 ~ 3~[X(~ ) A A ~ E 

dorn(ti) 19 dom(sj)], then l/ ~ 3~X*(~). We let X' abbreviate X(~) A A ~ �9 

dom(ti) f3 dorn(si). There is nothing to do if there are no free variables in X. The 

consistency of the relevant type is immediate from the following simple proposi- 

tion: 

PROPOSITION 6.4: For X(Y:) as above, ff .,4 ~ 3~X'(Y:), then for any e > 0, 

,4 P 3~(x'(~) ^ h Ix~l < ,). 

Proof." If this is false, choose i minimal so that 

.4 ~ (x ' ( , )  ^ A I~Jl < ~) ~ I~,1 >- ~. 
j < i  
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Consider the set 

{x , :  . . .  . . .  ^ A I il < 
j< i  

This is nonempty but bounded away from zero. We may assume it has a positive 

element and then let e be the infimum of the positive elements of this set. Pick 

any ai with 0 < ai < 2e in this set. We can find a with ith entry ai so that  

,4 ~ X'(a) A Aj<i [aj[ < e. Now notice that for any term t(~) with no constants, 

X~/1-a~ But if ~ E dom(t), so is ~a,1- and t(�89 = �89 This implies that A ~ x2 J" 

I~a~l < e too, so ~ai is in the set; this contradiction establishes clearly A ~ Aj<i I 1 

the proposition. | 

This proposition makes the consistency of all the X*(~)'s in p clear, and this 

leads instantly to the existence of the function a required. It is also immediate 

that,  given a from A, if A ~ 3~X'(~, a), then 1) ~ 3~'X*(g', a(~)). We identify A 

with a(A) in what follows. 

It is clear what reduct V ~ of the vector space }2 we will take to verify Theorem 

6.1. We keep -F and <, and name all the points in A0. Finally, for any p.e. f of 

A with dora(f) = ( -a ,  a), the function f v  so that fV(x)  = dl(x ) for - a  < x < a 

and 0 elsewhere is 0-definable in the ordered vector space with a named, so this 

is the interpretation of ] in Y~. It is obvious that V' satisfies the axioms listed 

above for Th(A), and now from the quantifier elimination for A, we see that 

.4 ~ Y'. This completes the proof of Theorem 6.1. | 

Now, as promised, we can easily characterize group-intervals whose theory is 

o-minimal and linear (modular). The result is: 

THEOREM 6.5: Let T be the theory of an o-minimal CF group-interval. Then 

there is an interval of an ordered vector space Z such that T is a reduct of Th(Z). 

I f  T is in fact modular, T is interdefmable with Th(Z). 

Proof: We know how to construct a full group out of any A4 ~ T. Then we 

know how to embed said group into an ordered vector space. The division ring 

for this space remains the one we have for A4. It is clear that anything definable 

in .M is definable in the vector space by Proposition 4.2 above. In the modular 

case, we have (Lemma 4.3) that in .M, for every p.e. f ,  either f or f - 1  is total. 

From this and the quantifier elimination for VII (as pointed out on page 9), it is 

clear that  A4 gains no new structure when it is identified with I C V. | 
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Example 6.6: Let T~ I be a nonstandard elementary extension of the real field, 

a E R ~ be infinite, and f the p.e. defined on ( - a - l , a  -1) by f ( z )  = ax. 

Then Th(R';  +, <, f )  is linear in our sense, and a reduct of an ordered vec- 

tor space over D --- Q(~). However, if we let A ~ (R'; +, <, f )  omit the type 

{z > 1,x > 2, x > 3 , . . .} ,  we cannot expand A itself to an ordered vector 

space over D. The group that arises in our construction of the last section from 

(R'; +,  <, f ) [ [ -1 ,1  ] will be such an A. 
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